Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport.
نویسندگان
چکیده
Artificially mediated linear (methylviologen) and cyclic (phenazine methosulfate) electron transport induced zeaxanthin-dependent and independent (constitutive) nonphotochemical quenching in osmotically shocked chloroplasts of pea (Pisum sativum L. cv Oregon). Nonphotochemical quenching was quantitated as Stern-Volmer quenching (SV(N)) calculated as (F(m)/F'(m))-1 where F(m) is the fluorescence intensity with all PSII reaction centers closed in a nonenergized, dark-adapted state and F'(m) is the fluorescence intensity with all PSII reaction centers closed in an energized state. Reversal of quenching by nigericin and electron-transport inhibitors showed that both quenching types were energy-dependent SV(N). Under light-induced saturating DeltapH, constitutive-SV(N) reached steady-state in about 1 minute whereas zeaxanthin-SV(N) continued to develop for several minutes in parallel with the slow kinetics of violaxanthin deepoxidation. SV(N) above the constitutive level and relative zeaxanthin concentration showed high linear correlations at steady-state and during induction. Furthermore, F(o) quenching, also treated as Stern-Volmer quenching (SV(O)) and calculated as (F(o)/F'(o))-1, showed high correlation with zeaxanthin and consequently with SV(N) (F(o) and F'(o) are fluorescence intensities with all PSII reaction centers in nonenergized and energized states, respectively). These results support the view that zeaxanthin increases SV(N) above the constitutive level in a concentration-dependent manner and that zeaxanthin-dependent SV(N) occurs in the pigment bed. Preforming zeaxanthin increased the rate and extent of SV(N), indicating that slow events other than the amount of zeaxanthin also affect final zeaxanthin-SV(N) expression. The redox state of the primary electron acceptor of photosystem II did not appear to determine SV(N). Antimycin, when added while chloroplasts were in a dark-adapted or nonenergized state, inhibited both zeaxanthin-SV(N) and constitutive-SV(N) induced by linear and cyclic electron transport. These similarities, including possible constitutive F(o) quenching, suggest that zeaxanthin-dependent and constitutive SV(N) are mechanistically related.
منابع مشابه
Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts.
Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO(2)-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required DeltapH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate p...
متن کاملInhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.
Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a componen...
متن کاملChlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.
The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron ...
متن کاملDark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP.
Zeaxanthin-dependent nonphotochemical fluorescence quenching is a light-induced activity in plants that apparently protects against the potentially damaging effects of excess light. We report a dark-induced nonphotochemical quenching in thylakoids of Lactuca sativa L. cv. Romaine mediated by ATP. This effect is due to low lumen pH from hydrolysis-dependent proton pumping and hence required an a...
متن کاملMultiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).
Reversible nonphotochemical fluorescence quenching depends on thylakoid lumen acidification and violaxanthin de-epoxidation and is correlated with photoprotection of photosynthesis. The O2-dependent electron flow in the coupled Mehler-ascorbate peroxidase reaction (MP-reaction) mediates the electron flow necessary for lumen acidification and violaxanthin de-epoxidation in isolated, intact chlor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 1991